The Bayesian Lasso

نویسندگان

  • Trevor Park
  • George Casella
چکیده

The Lasso estimate for linear regression parameters can be interpreted as a Bayesian posterior mode estimate when the priors on the regression parameters are independent double-exponential (Laplace) distributions. This posterior can also be accessed through a Gibbs sampler using conjugate normal priors for the regression parameters, with independent exponential hyperpriors on their variances. This leads to tractable full conditional distributions through a connection with the inverse Gaussian distribution. Although the Bayesian Lasso does not automatically perform variable selection, it does provide standard errors and Bayesian credible intervals that can guide variable selection. Moreover, the structure of the hierarchical model provides both Bayesian and likelihood methods for selecting the Lasso parameter. The methods described here can also be extended to other Lasso-related estimation methods like bridge regression and robust variants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Quantile Regression with Adaptive Lasso Penalty for Dynamic Panel Data

‎Dynamic panel data models include the important part of medicine‎, ‎social and economic studies‎. ‎Existence of the lagged dependent variable as an explanatory variable is a sensible trait of these models‎. ‎The estimation problem of these models arises from the correlation between the lagged depended variable and the current disturbance‎. ‎Recently‎, ‎quantile regression to analyze dynamic pa...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

Imputation of parent-offspring trios and their effect on accuracy of genomic prediction using Bayesian method

The objective of this study was to evaluate the imputation accuracy of parent-offspring trios under different scenarios. By using simulated datasets, the performance Bayesian LASSO in genomic prediction was also examined. The genome consisted of 5 chromosomes and each chromosome was set as 1 Morgan length. The number of SNPs per chromosome was 10000. One hundred QTLs were randomly distributed a...

متن کامل

Priors on the Variance in Sparse Bayesian Learning; the demi-Bayesian Lasso

We explore the use of proper priors for variance parameters of certain sparse Bayesian regression models. This leads to a connection between sparse Bayesian learning (SBL) models (Tipping, 2001) and the recently proposed Bayesian Lasso (Park and Casella, 2008). We outline simple modifications of existing algorithms to solve this new variant which essentially uses type-II maximum likelihood to f...

متن کامل

Penalized Regression, Standard Errors, and Bayesian Lassos

Penalized regression methods for simultaneous variable selection and coefficient estimation, especially those based on the lasso of Tibshirani (1996), have received a great deal of attention in recent years, mostly through frequentist models. Properties such as consistency have been studied, and are achieved by different lasso variations. Here we look at a fully Bayesian formulation of the prob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005